泰州高强无收缩灌浆料报价
在三水醋酸钠基复合相变材料中添加导热强化剂铜粉、碳粉和膨胀石墨,研究导热强化剂对复合相变材料导热性能的影响.利用示差扫描量热仪测量膨胀石墨添加前后复合相变材料的热特性.结果表明:膨胀石墨能与三水醋酸钠基复合相变材料很好共融,并对复合相变材料的导热有显著的强化效果.膨胀石墨掺量为10%(体积分数)时,三水醋酸钠基复合相变材料相变焓为307.762kJ/kg,与未添加膨胀石墨复合相变材料相变焓相比减少不到2%,而导热系数却提高了2倍.
60灌浆料用途
地脚螺栓锚固、栽埋钢筋、灌浆层后度30mm<..&..<..150mm的设备基础二次灌浆。有抗油要求的设备基础二次灌浆。
产品特点
1.早强、高强、1天强度较高可达50MPa以上,设备安装完毕一天后即可运行生产
2.自流态、现场只需加水搅拌后,即可施工,不须振捣便可充填全部空隙
3.微膨胀、灌浆料与基础紧密接触
4.耐久性、200万次疲劳实验,50次冻融循环实验、强度无明显变化
5.抗油渗、在机油中浸泡30天后其强度比浸油前提高10%以上
6.施工性、机械、人工搅拌均可,简便快捷
泰州高强无收缩灌浆料报价
以电化学交流阻抗谱和再碱化模拟试验研究了再碱化对碳化混凝土中具有氧化层钢筋的作用;采用扫描电镜(SEM)结合能谱分析(EDS)对再碱化后具有氧化层钢筋的表面进行了分析.结果表明:再碱化过程中,钢筋电极表面的电化学反应与钢筋表面的状态密切相关;当钢筋电极表面存在氧化物时,再碱化使该氧化物的价态逐渐降低,并在钢筋电极表面形成单质铁,导致钢筋表面不易形成致密钝化膜.
适用范为
型号 | 适用范围 |
CGM-1(普通型) | 地脚螺栓锚固、栽埋钢筋、灌浆层厚度30mm<ð<150mm的设备基础二次灌浆。有抗油要求的设备基础二次灌浆。 |
CGM-1(加固型) | 灌浆层厚度≥150mm的设备基础二次灌浆。建筑物的梁、板、柱、基础和地坪的补强加固(修补厚度>40mm)。有抗油要求的设备基础二次灌浆。 |
CGM-2(普通型) | 灌浆层厚度30mm<ð<150mm的设备基础二次灌浆。 |
CGM-2(加固型) | 灌浆厚度≥150mm设备基础二次灌浆。建筑物的梁、板、筑、基础和地坪的补强加固(修补厚度≥40mm)。 |
CGM-3(超早强) | 灌浆厚度30mm<ð<150mm的设备基础二次灌浆。 |
CGM-4(超流态) | 灌浆厚度在2mm<ð<30mm的设备基础及钢结构柱脚板二次灌浆。混凝土梁柱加固角钢与混凝土之间缝隙灌浆。 |
CGM-5耐热型 | 灌浆层表面辐射温度低于500°C的有耐热要求的设备基础灌浆、结构和基础加固灌浆。 |
CGM-6(抢修料) | 1小时强度大于20MPa,用于道路、机场、铁路、桥梁等快速抢修(灌浆后1-2小时可开放交通) |
CGM-7(核电) | 核电设备基础灌浆、结构加固灌浆、有防辐射要求的结构加固灌浆。 |
CGM-9(支座安装专灌浆料) | 适用于铁路、公路、桥梁的混凝土预制件安装灌浆、座浆。 |
技术指标
型号 | 抗压强度(MPa) | 膨胀性(%) | 流动性 | 较低施工温度,°C | ||||||||
1h | 2h | 1天 | 3天 | 28天 | 竖向膨胀率 | ASTMC827,3h | 流动度mm | 坍落度mm | 流槽法mm | 马氏漏斗法,s | 较低施工温度,°C | |
CGM-1普通型 | / | / | ³30 | ³45 | ³65 | ³0.02 | / | ³300 | / | ³600 | / | -10 |
CGM-1加固型 | / | / | ³30 | ³45 | ³65 | ³0.02 | / | / | ³270 | / | / | -10 |
CGM-2普通型 | / | / | ³22 | ³38 | ³55 | ³0.02 | / | ³270 | / | ³550 | / | 5 |
CGM-2加固型 | / | / | ³22 | ³38 | ³55 | ³0.02 | / | / | ³270 | / | / | 5 |
CGM-3 | / | ³15 | ³30 | ³45 | ³60 | ³0.02 | / | ³270 | / | ³550 | / | 5 |
CGM-4 | / | / | ³18 | ³32 | ³45 | ³0.02 | / | ³350 | / | ³650 | ³24 | 5 |
CGM-5 | / | / | ³30 | ³45 | ³60 | ³0.02 | / | ³300 | / | ³600 | / | -10 |
CGM-6 | ³20 | ³30 | ³35 | ³45 | ³60 | ³0.02 | / | / | ³260 | / | / | -20 |
CGM-7 | / | / | ³25 | ³40 | ³60 | ³0.02 | 0.05~2.0 | ³300 | / | ³600 | ³24 | 5 |
CGM-9 | / | ³20 | ³40 | ³45 | ³60 | ³0.02 | / | ³320 | / | ³620 | / | -10 |
施工方法:1.施工前应准备搅拌设备、养护物品和必要的工具。
推导了拉索线膨胀系数的测定公式;根据试验原理,研制了水域索线膨胀系数测定仪,验证了该仪器的性,并对钢丝绳、钢绞线、半平行钢丝束和钢拉杆4种索材进行了线膨胀系数测定;根据试验得到的拉索线膨胀系数,对预应力钢结构进行了温度作用下的力学性能分析.结果表明:拉索为钢丝绳和半平行钢丝束时结构力学性能受温度的影响较大,而拉索为钢铰线和钢拉杆时则受温度的影响较小,结构设计时需考虑索材选取不同所造成的温度预应力损失影响.
2.CGM灌浆料的拌和,
(1)CGM灌浆料伴和时,加水量应随货提供的产品合格证上的用水量,搅拌均匀即可使用。在满足施工流动度条件下尽量降低用水量。严禁使用明显必水的拌和料进行灌浆。
(2)CGM灌浆料的伴和可采用机械搅拌或人工搅拌,推荐采用强制式搅拌机拌和。
(3)每次搅拌量应视使用量多少而定,以40分钟以内将拌和好的灌浆料用完。
(4)冬季施工时,应采用不超过60°C的温水拌和灌将料,以浆体和入模温度在10°C以上。
(5)现场使用时,严禁在CGM灌浆料中掺入任何外加剂,外掺料。
3.地脚螺栓锚固
(1)地脚螺栓成孔时,基础混凝土强度不得小于20Mpα,螺栓孔壁应粗糙。
(2)成孔后,应除去孔内杂物、检测孔的深度,并用水充分湿润孔壁。灌浆前应清除孔内积水。
(3)浆拌和好的CGM灌浆料灌入螺栓孔中,灌浆过程中严禁震捣,必要时可以轻微插捣。灌浆结束后不得调整螺栓。
(4)灌浆施工不易直接灌入时,宜采用流槽辅助施工。
基于电渗均匀快速的排水特性,建立了电渗滤水试验模型,阐述电压加载初始时点、电压值、电渗历时及电极间距对混凝土成型效果的影响,并研究了结合透水模板垫层来改善电渗混凝土成型外观的方法.结果表明:电渗结合透水模板工艺排水可形成致密无孔洞混凝土表面,显著降低混凝土渗水透气性能,且可提高混凝土表面强度.