智慧图新零售大数I据营销对企业的帮助有哪些
智慧图新零售大数据营销对企业的帮助有哪些
智慧图作为位置服务行业的者和推动者,智慧图所构建的从场景感知到位置大数据服务再到场景服务的商业生态闭环运转流畅,为广告、营销、安全、出行、消费金融等等多个领域的产业贡献价值。本次智慧图继续为大家普及大数据营销的价值有哪些。
1、大数据营销实现线上线下结合后进入多屏时代。
多屏时代的到来,正在把受众的时间、行为分散到各个屏幕上,而广告主想要更好地抓住消费者的兴趣点,就需要实现多屏的程序化购买。未来大数据营销的大趋势便是多屏整合下的数字营销。
目前大部分企业经营决策面临的大挑战不是缺少数据,而是数据太多,数据碎片化,各自为政。许多公司组织中,数据都散落在互不连通的数据库中,并且相应的数据技术也都存在于不同部门中,面对这些静态、孤立、无多大参考意义的“初级品”的信息数据,企业信息部门只有将这些孤立错位的数据库打通、互联并且实现技术共享,才能够大化大数据价值,提供决策支持。
2、大数据营销并非“量”的存在而在于“智慧的数字生态”
营销是大数据营销的一个核心方向和价值体现。然而目前市场上很多大数据营销技能的企业存在很多片面性,整个SNS体系的生态数据应该是完整的数据展现而并非微博、数据平台等单一的数据支撑。其次,配套程度有限。大数据智能除了像EDM通道外,还需要和终端配合,这点目前市场上做的还很分散。后,企业在做大数据营销时对个体消费群体真正能够接受大数据给自己带来的便捷同时也因为涉及“个人隐私”这个敏感的词汇而有所收敛。
大数据营销的两个核心方向是To B 和 To C。To B即商业智能化,涉及企业智能化供应链决策体系优化,这个供应链不是常规理解的传统意义的物流,而是囊括企业人力资源、服务采购、销售市场拓展、内控成本分析等诸多层面。To C,即生活服务,涉及餐饮、旅游、医疗等诸多领域,以个人信息为核心的信息组织管理模型,将在未来,重构民生体验。
3、大数据营销是“大规模个性化互动” 实现转化的基础
大数据营销以DMP为核心,包括CMO辅助决策系统,内容管理系统,用户互动策略系统,效果评估与优化系统,消费者聆听和客户服务系统,在线支付管理系统等几个方面。主要从决策层,分析层和执行层几个方面来完成营销,服务和销售全流程管理。
每个公司所处的阶段不同,关心的问题也不同。未来除了广告平台以外,品牌主会更加关注其消费者生命周期的数据管理,与平台合作,实现在多个接触点上的个性化沟通。因此,传统意义上广告策略将渐渐被基于对用户画像的自动化沟通机制所替代,而CMO也借助构建DMP,SCRM等IT设施来应对这一趋势。
4、大数据营销即建立一个数据建模让营销更加、有效
数据的获取方法主要体现在信息系统普及、传感器网路等等。其次是数据处理方法,像是使用通用计算机搭建计算能力超群的系统,如SNS社交媒体,利用更加开放的系统,在不妨碍平台利益和用户隐私的情况下,理论上获取每一个个人的SNS行为轨迹,然后存储在服务器上,形成一个庞大的数据库积累后成为大数据营销的一个数据基础。
目前在营销过程中涉及数据方面的多而杂,这时需要对数据的有效性进行过滤,例如行为噪声,重复数据,非目标用户等等。换句话说,大数据时代,数据和处理能力不再是主要矛盾,主要矛盾是如何从数据中获取想要的知识,也就是数据建模即挖掘能力。当然这个问题的求解,需要一些列建模的过程,然后把它转化成为具体的计算问题。未来基于大数据技术的提升,大数据营销的性将带来更多的商业价值。
5、大数据营销就是对“小数据”分析过程中的数据应用
对于大数据营销,多数人认为在做的事情可以称之为“大数据”,今天所有营销数据基本上是各家在利用有限的数据资源,虽然这个数据资源可能是庞大的,比如庞大cookie量,附属性的分析量等,但将其放在互联网、移动互联网环境上只是与营销相关的数据之一。因为现如今产业链的特征,企业都会有自己立的DMP系统,但做DMP第三方市场还没有一个通用型的DMP平台可以提供获取数据。因此所有的DMP本身是在应用数据,而并非是全网的大数据。
另外,当今的所有的用户数都来自于cookie或是APP使用行为等等,如用户属性,购买行为等,因其数据本身的局限性再从数据本身的一个维度的扩张来看,今天的数据也够不成大数据。因为大数据营销还处在一个概念普及的阶段,所以大数据未来的发展方向是指导整个营销行业趋势化或并不指导实际运用的作用和价值,而真正指导这个行业运用的还是小数据为主。这也是为什么如今立的第三方DMP生存并不理想的主要原因。
大数据可以帮助品牌发现机遇,如新客户、新市场、新规律、回避风险、潜在威胁等,同时亦可以有助于品牌营销决策的调整与优化。这其中包含了数据人才、数据模型和应变数据管理的组织职能优化等,这也是当前企业大数据营销转型中大的三个门槛。目前大数据营销的真切的切入点就是去做内工层面,即概念普及认识数据的重要性,这其中包括:数据的活性,量级,数据的准确性,以及数据维度的多元化,后交给市场一个教育的过程。
查看全部介绍